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Abstract

We present a new algorithm for solving the constrained shortest-path problem (CSPP),
which generalizes the standard shortest-path problem by adding one or more path-weight
side constraints. Our procedure Lagrangianizes those constraints, optimizes the resulting
Lagrangian function and then closes any duality gap by enumerating near-shortest paths,
measured with respect to the Lagrangianized length. “Near-shortest” implies 6-optimal, with
6 equaling the duality gap. Our recently developed algorithm for enumerating near-shortest
paths leads to an algorithm for CSPP that proves, empirically, to be significantly faster
than the fastest algorithm documented in the literature. We solve problems with millions of
vertices and edges and up to ten side constraints, in few seconds on a laptop computer.

1 Introduction

Shortest-path problems in networks with non-negative edge lengths (or with some negative-

length edges, but no negative-length cycles) can be solved efficiently, both in theory and

practice (e.g. Ahuja et al. [1], pp. 93-157). However, if each edge possesses a non-negative

weight in addition to its length, and if a single side constraint is placed on the optimal path’s

total weight, the problem becomes NP-complete (Garey and Johnson [14], p. 214). Multiple

edge weights and weight limits may be defined, and the general problem is known as the

constrained shortest-path problem (CSPP). This paper develops an improved algorithm and

ancillary techniques for solving this problem.
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CSPP is NP-complete in the weak sense for a fixed number of side constraints and admits

a dynamic-programming solution procedure (Joksch [17]). However, dynamic programming

(DP) can be unacceptably slow in practice even with a single side constraint, and label-setting

algorithms based on DP have supplanted straightforward DP implementations (e.g., Aneja

et al. [2], Dumitrescu and Boland [10]). Other potentially useful techniques include branch

and bound using a Lagrangian-based bound (Beasley and Christofides [3]), and Lagrangian

relaxation coupled with K-shortest-paths enumeration (Handler and Zang [16]).

Dumitrescu and Boland [10] describe a label-setting algorithm, combined with several pre-

processing techniques, that may be the most efficient technique currently available for CSPP.

We present a competitive approach, which we call Lagrangian relaxation with near-shortest

paths enumeration (LRE). This approach Lagrangianizes the side constraints, optimizes the

Lagrangian function, and closes any duality gap by enumerating near-shortest paths. Path

length is measured with respect to the Lagrangianized edge lengths, and “near shortest”

means 6-optimal, with 6 equaling the duality gap. Often, a feasible solution is identified

while optimizing the Lagrangian function, but any upper bound on the optimal objective

value will suffice, in theory, for the method to succeed.

LRE resembles the algorithm of Handler and Zang, but with a near-shortest-paths (NSP)

algorithm replacing their K-shortest-paths (KSP) algorithm. The LRE approach seems par-

ticularly attractive because we (Carlyle and Wood [6]) have recently developed an extremely

fast near-shortest-paths algorithm, and “near-shortest paths” proves to be a more appro-

priate paradigm than “K-shortest paths” for the enumerative phase of the algorithm. We

discuss this issue in more detail later. LRE is also similar to the branch-and-bound algorithm

of Beasley and Christofides, but LRE does not solve a shortest-path problem at each node

of the branch-and-bound enumeration tree.

CSPP arises in a number of real-world contexts. The most well-known application may

be column-generation for generalized set-partitioning models of crew-scheduling and crew-

rostering problems, especially in the airline industry (e.g., Gamache et al. [13], Day and

Ryan [7], Vance et al. [25]). Other important applications include minimum-risk routing of
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military vehicles and aircraft (e.g., Boerman [4], Latourell, et al. [20], Lee [21], Zabarankin

et al. [28]), signal routing in communications networks having quality-of-service guarantees

(see Korkmaz and Krunz [19] and the references therein), signal compression (Nygaard et

al. [23]) and numerous transportation problems (e.g., Nachtigall [22], Kaufman and Smith

[18]).

The remainder of the paper begins by defining CSPP precisely, and by then describing the

basic LRE solution approach. Next, we provide an overview of the NSP algorithm that makes

our LRE algorithm viable. (An appendix contains detailed pseudo-code.) We do not discuss

optimizing the Lagrangian function in any detail because the relevant techniques are well

known. We then refine the basic LRE algorithm by adding a simple pre-processing scheme

and aggregated-bounds tests to limit enumeration in the NSP algorithm. We also describe a

technique for identifying feasible solutions in especially tightly constrained problems. Finally,

we present computational results for the LRE algorithm applied to small-, medium-, and

large-scale networks. The structure of some of these problems mimics that of the problems

solved by Dumitrescu and Boland [10], and therefore allows for useful comparisons. We also

present computational examples that derive from a model of minimum-risk routing for a

military convoy.

2 Problem Definition and Basic Approach

LetG = (V,E) be a directed graph with vertex set V and edge set E. Each edge e = (u, v) ∈ E
connects distinct vertices u, v ∈ V . It possesses length ce ≥ 0 and one or more weights,

fie ≥ 0, for i ∈ I, where I indexes a set of side constraints. Each side constraint i has a
weight limit gi ≥ 0 defined.
A directed s-t path EP is an ordered set of edges of the form EP = {(s, v1), (v1, v2), . . . ,

(vk−1, t)}. The path is simple if no vertices are repeated. Given two distinct vertices s, t ∈ V ,
the constrained shortest-path problem (CSPP) seeks a directed, simple, s-t path EP such that

e∈EP fie ≤ gi for all i ∈ I, and such that e∈EP ce is minimized.

Let A denote the |V | × |E| vertex-edge incidence matrix for G such that if e = (u, v),
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then Aue = 1, Ave = −1 and Awe = 0 for any w W= u, v. Also, let bs = 1, bt = −1 and bv = 0
for all v ∈ V \{s, t}, and let g denote the vector (g1g2 · · · g|I|). For each i ∈ I, we collect the
edge weights fie, e ∈ E, in the row vector fi. Finally, we define F as the |I| × |E|-matrix
having vectors fi as its rows. Then, CSPP may be written as this integer program (Ahuja

et al. [1], p. 599),

CSPIP z∗ ≡ min
x
cx (1)

s.t. Ax = b (2)

Fx ≤ g (3)

x ≥ 0 and integer, (4)

where x∗e = 1 if edge e is in the optimal path, and x∗e = 0, otherwise. Note that the

problem’s structure leads to binary solutions without explicit constraints x ≤ 1. Equations
(3) are CSPP’s side constraints. We refer to x̂ as a “path” when it satisfies all constraints of

CSPIP except possibly the side constraints. Strictly speaking, such an x̂ could have xe = 1

for all edges e around one or more cycles, but (i) there always exists an optimal solution

without cycles since c ≥ 0 is assumed, and (ii) our LRE algorithm cannot generate any

solutions to CSPP that have cycles in them, so (iii) this point can be safely ignored.

CSPIP would define an easy-to-solve shortest-path problem if not for the side constraints.

We expect to have only a few such constraints, say one to ten, and it therefore seems

reasonable to base a solution procedure on relaxing them. Using the standard theory of

Lagrangian relaxation (e.g., Ahuja et al. [1], pp. 598-648), we know that for any appropriately

dimensioned row vector λ ≥ 0,

z∗ ≥ z(λ) ≡ min
x
cx + λ(Fx− g) (5)

s.t. Ax = b (6)

x ≥ 0 and integer. (7)

We then rewrite the objective function, and optimize the Lagrangian lower bound z(λ)
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through

CSPLR z∗ ≡ max
λ≥0 z(λ) (8)

= max
λ≥0 min

x
(c+ λF )x− λg (9)

s.t. Ax = b (10)

x ≥ 0 and integer. (11)

For any fixed λ ≥ 0, computing z(λ) simply requires the solution of a shortest-path problem
with Lagrangian-modified edge lengths.

The solutions of the inner minimization of CSPLR are intrinsically integer, so we know

that z∗ equals the optimal objective value of the linear-programming relaxation of CSPIP

(e.g., Fisher [11]). And, it is easy to construct examples in which this bound is not very

close to z∗. Thus, the success of the LRE approach will sometimes depend on the ability to

close a large duality gap quickly.

The outer maximization over λ can be solved in several ways, depending on the dimension

of λ, i.e., on the number of side constraints. Bisection search works well for a single side

constraint (Fox and Landi [12]), as does coordinate search for a few side constraints (e.g.,

DeWolfe et al. [8]). Beasley and Christofides [3] describe the use of subgradient optimization

for CSPP with up to 10 side constraints. A constraint-generation algorithm analogous to

Benders decomposition could also be used (e.g., Wolsey [27], pp. 172-173)

In the process of optimizing z(λ), we may find a solution x̂ that is feasible with respect to

the relaxed side constraints (3) as well as to constraints (2) and (4). Such a feasible solution

provides an upper bound z̄ = cx̂ ≥ z∗. In particular, if CSPIP possesses only a single

side constraint, then for sufficiently large λ every optimal solution of CSPLR satisfies (3).

Unfortunately, as the number of side constraints grows, finding a feasible solution to CSPIP

during the optimization of z(λ) becomes less and less likely. Fortunately, since every optimal

solution of CSPIP will be a simple path, a (weak) upper bound for a feasible CSPIP is

always z̄ = (|V |− 1)cmax where cmax ≡ maxe∈E ce.
Now, given z̄, and an optimal (or nearly optimal) Lagrangian vector λ, the following
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theorem and corollary show that we may view the problem of identifying x∗, an optimal

solution to CSPIP, as one of simple enumeration. (The theorem is implicit in Handler and

Zang [16].)

Theorem 1 Let X̂(λ, z̄) denote the set of feasible solutions x̂ to CSPLR with the property

that cx̂+ λ(F x̂− g) ≤ z̄. Then, x∗ ∈ X̂(λ, z̄).
Proof: Since Fx∗ ≤ g and λ ≥ 0, the result follows from the facts that (i) cx∗+λ(Fx∗−g) ≤
z∗, and (ii) z∗ ≤ z̄.

Corollary 1 If CSPIP is feasible, an optimal solution x∗ can be identified by enumerating

X̂(λ, z̄) and selecting

x∗ ∈ argmin
x ∈ X̂(λ, z̄)

{cx | Fx ≤ g}. (12)

Theorem 1 and Corollary 1 are valid for any λ ≥ 0, but it is easy to devise examples that
show how an optimal or near-optimal λ for CSPLR can exponentially reduce the size of

X̂(λ, z̄), and thereby exponentially reduce computational workload. (Naturally, improving

the upper bound z̄ can also reduce the workload exponentially.)

Theorem 1 and Corollary 1 imply that we may need to enumerate each path x̂ satisfying

(c + λF )x̂− λg ≤ z̄. That is, if x∗λ solves the shortest-path problem given the edge-length

vector c+λF , and z(λ) = (c+λF )x̂∗λ −λg then CSPP is solved by enumerating all paths
x̂ such that z(λ) ≤ (c+λF )x̂−λg ≤ z̄. In turn, this means that, given edge-length vector
c+λF , and including the Lagrangian constant term −λg in the length of any path, we wish
to find all 6-optimal (near-shortest) paths for 6 ≡ z̄ − z(λ). Naturally, as any enumeration
process proceeds, better feasible solutions may be found, z̄ and thus 6 may consequently

improve, and the enumeration may consequently be reduced.

From the above discussion, it appears that an NSP algorithm, which identifies 6-optimal

paths, is a natural choice for path enumeration in the LRE solution approach to CSPP. A

typical K-shortest-paths (KSP) algorithm could be used, however (e.g., Hadjiconstantinou
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and Christofides [15]), Such an algorithm is meant to enumerate the K shortest paths in a

network for a pre-specified integerK. But, because it enumerates paths in order of increasing

length, it could be halted when path length exceeds (c+λF )x∗λ + 6. However, enumerating

paths in order of length requires unnecessary computational work, storage and algorithmic

complexity. The NSP algorithm of [6] is much simpler and faster. “Faster” is a valid claim

here, even though NSP and KSP are somewhat different problems. Wood and Carlyle [6]

show that solving KSP using an NSP algorithm as a subroutine is the fastest available

method by a wide margin (assuming the paths need not be ordered by length).

3 The LRE Algorithm for CSPP

This section outlines the basic LRE algorithm for CSPP.

LRE Algorithm for CSPP (Outline)

1. Find λ that optimizes, or approximately optimizes, the Lagrangian lower bound z(λ).

2. Let X̂ denote the set of feasible paths identified while optimizing z(λ). If X̂ W= ∅, set
upper bound z̄ = minx̂∈X̂ cx̂, else set z̄ = (|V |− 1)cmax + γ for some γ > 0.

3. Using a standard path-enumeration procedure (e.g., Byers and Waterman [5]), begin

enumerating all paths x̂ such that (c+λF )x̂−λg ≤ z̄, with the following modifications:

(a) Use z̄ and the side constraints to limit the enumeration when it can be projected

that the current path cannot be extended to one whose length improves upon z̄ or

which does not violate the side constraints.

(b) Whenever a feasible path, x̂, is found that is shorter than the incumbent, update

the incumbent to x̂ and update the upper bound to z̄ = cx̂.

4. If no x̂ is found in Step 3, the problem is infeasible; otherwise the best solution x̂ is

optimal.
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The NSP algorithm upon which we base this procedure (see the Appendix for the complete

pseudo-code) begins by

1. Computing the minimum “Lagrangian distance” d(v) from each v ∈ V back to t by

solving a single, backwards, shortest-path problem starting from t, using Lagrangianized

edge lengths cI ≡ c+ λF ,

2. Computing analogous minimum v-to-t distances d0(v) for all v ∈ V with respect to edge
lengths c, and

3. Computing analogous minimum v-to-t distances di(v) for all v ∈ V and i ∈ I with
respect to edge weights fi.

This first phase requires the solution of only |I|+ 2 shortest-path problems.
Let EP (u) = {(s, v1), (v1, v2), . . . , (vk−1, u)} denote a directed s-u subpath. In the second

phase of the algorithm, a standard path-enumeration algorithm commences from s, but

extends subpath EP (u) along edge e = (u, v) if and only if the following conditions hold:

1. EP (u)∪{e} can be extended to a path whose Lagrangianized length does not exceed z̄,
i.e., L(u) + (ce + i∈I λifie) + d(v) ≤ z̄, where L(u) denotes the Lagrangianized length
of EP (u) and where, by convention, we define L(s) = −λg.

2. EP (u) ∪ {e} can be extended to a path whose true length is strictly less than z̄, i.e.,
L0(u) + ce + d0(v) < z̄, where L0(u) denotes the length of EP (u).

3. For all i ∈ I, EP (u)∪ {e} can be extended to a path whose i-th weight does not exceed
gi, i.e., Li(u) + fie + di(v) ≤ gi, where Li(u) denotes the i-th total weight of EP (u).

4. The path does not loop back on itself.

It is easy to see that these conditions are necessary for existence of a feasible path, because

the labels d(v), d0(v) and di(v) represent lower bounds on the the Lagrangianized length, true

length, or i-th weight, respectively, that are required to the complete the subpath EP (u)∪{e}.
(Computer scientists will recognize this algorithm as a non-heuristic version of “A* search,”
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e.g., Russell and Norvig 1995, pp. 92-107.) These labels are lower bounds, not exact values,

because the v-t paths they represent may use vertices in the current subpath EP (u). Such

vertices cannot be used together with the current subpath because their inclusion would

create at least one illegal cycle in the final solution.

Exact values can be maintained for those labels if we recompute the various “distances”

every time we extend or retract the current subpath, and ensure that those computations

avoid traversing vertices on that subpath. Exact labels would make the tests stronger and

could reduce enumeration substantially. Indeed, when enumerating near-shortest paths with

respect to a single distance measure, this recomputation ensures that only polynomial work

need be expended for each path enumerated; lacking these recomputations, the work can be

exponential (Carlyle and Wood [6]).

On the other hand, solving the shortest-path problems required to maintain precise dis-

tance labels can add tremendously to the computational workload. This workload need not

be as great as one shortest-path calculation for each type of distance label, for every ex-

tension or retraction of the current subpath, but the workload can still be onerous. Indeed,

Carlyle and Wood show empirically that, for enumerating near-shortest paths, an algorithms

that does not recompute distances can be orders of magnitude faster than one that does.

This holds true over a wide range of problem classes, even though the worst-case complexity

worsens. Consequently, we do not maintain precise distance labels in our LRE algorithm.

(Note: Even if we recomputed distance labels, the amount of work per feasible path

enumerated in LRE could be exponential. This is true because tests 1-3 above, even with

precise distance labels, are necessary, but not sufficient to guarantee the existence of a single

path that satisfies all the conditions simultaneously.)

The LRE algorithm actually defines a branch-and-bound procedure that incorporates a

depth-first enumeration tree along with feasibility checks. Branching consists of extending

the current subpath by one edge. A linear-programming-based algorithm would update

the lower-bounding model to account for the restriction imposed by a branch and would

then reoptimize the lower bound. LRE updates the bound, but does not reoptimize it.
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Reoptimization would require a new search over λ and the solution of more shortest-path

problems, which we have not found to be computationally effective.

As with any branch-and-bound procedure, allowing a small but acceptable optimality gap

in LRE can substantially reduce the amount of enumeration required. The pseudo-code for

the NSP algorithm, given in the Appendix, does include an “absolute-gap parameter” for

this purpose, δ ≥ 0.

4 Algorithmic Enhancements

As demonstrated in the next section, the basic LRE algorithm can solve a variety of problems

quickly. This section describes, however, three enhancements to the basic algorithm which

prove useful for solving more difficult problems.

4.1 Pre-processing

A pre-processing procedure may be able to identify numerous vertices and edges that cannot

lie on any optimal path, and remove them prior to optimization. Such pre-processing can

reduce subsequent computation time by reducing the size of the network on which the rest

of the algorithm must operate. Furthermore, a smaller network may also yield a tighter

Lagrangian bound. We use the following pre-processing procedure originally proposed by

Aneja et al. [2]:

1. For all i ∈ I and v ∈ V , compute a minimum-weight s-v subpath length Di(v) and a
minimum-weight v-t subpath length di(v) using the i-th weight.

2. Delete any edge e = (u, v) ∈ E such that Di(u) + fie + di(v) > gi for any i ∈ I.

3. Repeat steps 1 and 2 until no new edges can be deleted.

Once an upper bound z̄ is found, this procedure can also be performed with respect to

the edge lengths c and Lagrangianized edge lengths c+λF , for any λ, with “> gi” replaced

by ”≥ z̄.” (Recall that we include the Lagrangian constant term −λg in the Lagrangian
path length.)
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A similar procedure for eliminating vertices can also be constructed (for example, see

Aneja et al. [2] and Dumitrescu and Boland [10]), but the edge-elimination procedure essen-

tially subsumes it.

By its construction, our NSP algorithm automatically performs many of the checks that a

pre-processing procedure carries out. However, we do find that computational improvements

can accrue when we perform pre-processing with respect to the weights as in Step 1-3 above.

Since the subpaths in Step 1 are computed for each weight individually, there may be no

feasible s-t path involving an edge even when the edge was not deleted. To increase the

number of edges removed, we also pre-process with respect to the aggregated weight i∈I fie,

where “> gi” is replaced by “> i∈I gi” in Step 2. This “aggregated test” considers all the

weights for each edge along subpaths simultaneously and hence has the potential to remove

additional edges as the following example illustrates: Consider a three-vertex network with

edges a = (s, 2), b = (2, t), and c = (2, t), two weights f1a = f2a = f1b = f2c = 1,

f1c = f2b = 2, and weight limits g1 = g2 = 2. Trivially, edge a cannot be removed by

checks on the individual weights since there are 2-t subpaths with weight 1 for both weights.

However, there are no 2-t subpaths with aggregated weight of 2 and hence edge a is deleted

using the aggregated test. “LRE-P” will denote the LRE algorithm that incorporates pre-

processing Step 1-3 with respect to individual weights as well as the aggregated weight.

4.2 Aggregated Bounds to Limit Enumeration

Once λ has been optimized, the path-enumeration portion of the LRE algorithm continually

asks: Given that xe must equal 1 if e = (u, v) is on the current subpath, can this subpath

be extended to a complete path x such that

[A] cx < z̄, and
[B] −λg + (c+ λF )x ≤ z̄, and
[C] Fx ≤ g?

We do not extend the path along an edge, say e = (v, w), if setting xe = 1 would force x to

violate any of the constraints [A], [B], and [C]. The constraints are checked independently,

however, so this does not guarantee that a feasible completion (with respect to [A] and [B]
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and [C]) of the current subpath exists.

Similar to pre-processing with respect to an aggregated weight described in the previous

sub-section, we consider aggregated version of [A], [B], and [C] that may further limit the

path enumeration. Using empirically determined scaling factors, we construct tests that

aggregate [C], each pair of [A], [B], and [C], and one that aggregates all three:

g−1[C] (13)

[A] + [B] (14)

z−1[A] + g−1[C] (15)

z−1[B] + g−1[C] (16)

z−1[A] + z−1[B] + g−1[C] (17)

where g−1 = (1/g1 . . . 1/g|I|) and z−1 = 1/z(λ). For instance, checking z−1[B] + g−1[C]

corresponds to testing whether or not

−z−1λg+ (z−1c+ z−1λF + g−1F )x < z−1z̄ + |I| (18)

All of these tests are carried out by defining additional edge “lengths” which incorporate the

aggregated coefficients for x.

These tests involve additional overhead, of course, but computational tests will show

that they can reduce enumeration enough to make this overhead worthwhile. In these tests,

“LRE-A” will denote the LRE algorithm with the tests of this section included, and “LRE-

PA” will denote the use of both pre-processing from section 4.1 and the aggregated-bounds

tests of this section.

4.3 Feasibility Problem

When multiple side constraints exist, a feasible solution may not be found while optimiz-

ing z(λ). Clearly, the problem of finding a feasible path in a multi-constrained CSPP is

NP-complete. When this happens, the basic LRE algorithm begins its path-enumeration

phase with the weak upper bound z̄ = (|V | − 1)cmax + γ, which this may lead to excessive
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enumeration. The alternative method described next focuses on finding a feasible solution

directly.

If a feasible path exists, one can be identified by selecting an arbitrary side constraint

indexed by iI, and by then solving:

FIP min
x
fi x

s.t. Ax = b

fix ≤ gi ∀i ∈ I\{iI}

x ≥ 0 and integer.

Any feasible solution of FIP with objective value no greater than gi is feasible for CSPIP

and hence the corresponding path provides an upper bound for CSPIP. We solve FIP using

the same LRE algorithm as for the original problem with the modification that the algorithm

terminates when a solution with objective value no greater than gi is found. “LRE-PAF”

will denote the LRE algorithm using this “feasibility-checking enhancement” along with the

enhancements from the previous two subsections.

FIP has only one fewer side constraint compared to the original CSPP. This is a significant

reduction only for small |I| and cannot account for the improvements seen in our testing.
The benefit of using FIP, in tightly constrained problems, clearly derives from the fact that

gi tends to be a fairly tight upper bound on the optimal objective value for FIP, while the

upper bound z̄ = (|V |− 1)cmax + γ is weak for the original CSPP.

5 Computational Results

This section describes computational experiments with the LRE algorithm applied to prob-

lem instances defined on three classes of networks. We carry out all tests on a laptop com-

puter with a 3 GHz Intel Pentium IV processor, 1 gigabyte of RAM, the Microsoft Windows

XP Professional operating system, and with programs written and compiled using Microsoft

Visual C++ Version 6.0.

We solve instances of CSPP with at most ten side constraints, so repeated bisection
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searches in the coordinate directions (Fox and Landi [12], DeWolfe et al. [8]) suffice to

maximize z(λ) adequately and quickly. We have verified “adequately” by solving the the LP

relaxation of a number of instances of CSPP using an interior-point algorithm. Reported

solution times verify “quickly.” All versions of LRE employ the shortest-path algorithm

of Pape [24] as a subroutine. This algorithm has exponential worst-case complexity, but

performs consistently well on the problem classes studied here. For brevity, we use “D&B”

when referring to Dumitrescu and Boland [10].

5.1 Small-Scale Problem Instances

The first class of test problems consists of the 24 problem instances from Beasley and

Christofides [3]. Each instance has either one or ten side constraints and is solved to opti-

mality. Table 1 displays problem and solution statistics.

Column five of the table gives the “initial optimality gap” after optimizing z(λ) but

before initiating path enumeration, i.e., 100%(z̄ − z∗)/z∗. Similarly, column six gives shows
the Lagrangian duality gap, i.e., as 100%(z∗ − z∗)/z∗. For reference, column eight gives run
times from Beasley and Christofides. Those computations were performed using FORTRAN

on a CDC 7600 computer, and hence, a direct comparison of run times is difficult. D&B

also evaluate these problems, but do not report run times. However, D&B do solve most of

these problems using only their pre-processing routines (Column nine of Table 1 indicates

whether or not the pre-preocessing routine suffices to solve the instance.) Even though most

of these problems have large duality gaps, and may therefore require a significant amount

of path enumeration, the table shows that they present no computational challenge to the

basic LRE algorithm.

5.2 Grid Networks

Grid networks, with the same structure as those studied by D&B comprise the second class

of test problems. The test networks, denoted “Grid(a, b),” derive from a rectangular grid, a

vertices tall and b vertices wide, with a separate source vertex s and sink vertex t external
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Initial Duality Run Time Presolve
gap gap LRE B&C D&B

Problem |V | |E| |I| (%) (%) (sec.) (sec.)
BC1 100 955 1 60 47 0.0 1.9 yes
BC2 100 955 1 45 34 0.0 0.9 yes
BC3 100 959 1 33 33 0.0 1.9 yes
BC4 100 959 1 0 0 0.0 1.0 yes
BC5 100 990 10 21 21 0.0 4.6 yes
BC6 100 990 10 16 16 0.0 4.6 yes
BC7 100 999 10 142 62 0.0 4.4 yes
BC8 100 999 10 ∞ 227 0.0 6.3 no
BC9 200 2,040 1 18 18 0.0 2.0 yes
BC10 200 2,040 1 0 0 0.0 2.0 yes
BC11 200 1,971 1 0.1 0.1 0.0 4.0 yes
BC12 200 1,971 1 0.1 0.1 0.0 3.9 yes
BC13 200 2,080 10 133 100 0.1 5.2 yes
BC14 200 2,080 10 - - 0.1 9.3 yes
BC15 200 1,960 10 ∞ 61 0.0 9.2 yes
BC16 200 1,960 10 ∞ 120 0.1 12.1 no
BC17 500 4,858 1 41 34 0.0 10.6 yes
BC18 500 4,858 1 32 25 0.0 10.5 yes
BC19 500 4,978 1 0.0 0.0 0.0 11.1 yes
BC20 500 4,978 1 0 0 0.0 6.4 yes
BC21 500 4,847 10 33 33 0.1 13.6 yes
BC22 500 4,847 10 25 25 0.1 13.1 yes
BC23 500 4,868 10 22 22 0.1 26.3 yes
BC24 500 4,868 10 36 36 0.1 26.3 yes

Table 1: Problem statistics and run times for the basic LRE algorithm applied to problems from Beasley and
Christofides [3]. Run times on our 3 GHz laptop computer exclude problem-generation time and correspond
to a 0% optimality tolerance. BC14 is infeasible and the time reported there is for proving infeasibility.
Columns five and six report initial optimality gap and duality gap, respectively. An initial gap of∞ indicates
that no feasible solution was found while optimizing z(λ). The second-to-last column lists the run time, on
a CDC 7600 computer, reported by Beasley and Christofides. The last column specifies whether or not D&B
solve the problem with pre-processing alone.
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to the grid. The source s connects to each vertex in the leftmost column of the grid, and

each vertex in the rightmost column connects to t. Each vertex u within the grid has (up to)

three edges (u, v) directed out of it, up, down, and from left to right, as long as the vertex

v exists in the grid. Edge lengths and weights are uniform, randomly generated integers in

the range [1,10] for vertical edges, and in the range [80,100] for horizontal edges. For each

i ∈ I, weight limits are gi = αgmax,i + (1− α)gmin,i, where gmin,i denotes the total weight of

the minimum-weight path with respect to i, and gmax,i denotes the total weight, with respect

to i, of the shortest path (with respect to c). As in D&B, we examine α set to the low (L),

medium (M), and high (H) values of 0.05, 0.50, and 0.95, respectively: The “L-instances”

are tightly constrained, the “H-instances” are loosely constrained, and the “M-instances”

are somewhere inbetween.

5.2.1 Singly Constrained CSPPs on Small Grid Networks

Table 2 shows the run times for ten singly constrained instances also solved and reported

by D&B. The data for these instances (only) were obtained from one of those authors who

indicates that, for a given setting of a, b and α, each represents the most computationally

challenging instance extracted from a large set of randomly generated instances (Dumitrescu

[9]). The first five are L-instances from “problem class 4-L, Type 2” in D&B; the second five

are M-instances from “problem class 4-M, Type 2.”

Table 2, column five, presents the run times from D&B who use a 930 MHz Pentium

III computer with 512 megabytes of RAM. These times do not include pre-processing [9].

Using a conversion factor of 0.93/3.0, column six of Table 2 lists estimated run times for

their algorithm on our computer. Columns seven and eight of Table 2 report run times for

our LRE-A algorithm (which adds the aggregated-bounds tests of section 4.2 to the basic

algorithm), using 0% and 5% relative optimality tolerances, respectively. LRE-A uses no

pre-processing on these problems, although the data for the problems on Grid(30, 100) were

provided to us after pre-processing. The last column of Table 2 shows that LRE-A solves

these problems about 95% faster than the D&B algorithm.
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Run Time (sec.)
Grid Weight |V | |E| D&B D&BI LRE-A LRE-A Speedup

Limit Tol. 0% Tol. 0% Tol. 0% Tol. 5% (%)
(30, 100) L 3,002 8,830 0.65 0.20 0.02 0.00 90.1
(100, 100) L 10,002 29,990 0.79 0.24 0.06 0.02 75.5
(200, 200) L 40,002 119,800 22.9 7.00 0.31 0.10 95.6
(350, 200) L 70,002 209,950 30.4 9.41 0.51 0.15 94.6
(450, 300) L 135,002 404,850 113.7 35.3 1.27 0.34 96.4
(30, 100) M 3,002 8,830 0.56 0.17 0.01 0.00 94.2
(100, 100) M 10,002 29,990 3.12 0.97 0.05 0.01 94.8
(200, 200) M 40,002 119,800 21.2 6.56 0.25 0.07 96.2
(350, 200) M 70,002 209,950 36.2 11.2 0.39 0.09 96.5
(450, 300) M 135,002 404,850 144.4 44.7 1.02 0.23 97.7

Table 2: Comparison of LRE-A to the D&B label-setting algorithm for solving singly constrained CSPPs on
grid networks of problem class 4-L, Type 2, and problem class 4-M, Type 2. Each row represents a single
problem instance. Times marked “D&BI” are the D&B times scaled by a factor of 0.93/3.0 to account for
the slower computer in [10]. “Speedup” is the apparent improvement that LRE-A (0% tolerance) produces
over the D&B algorithm. Specifically, Speedup =100% (D&BI sec. − LRE sec.) / (D&BI sec.). Results for
LRE-A with a 5% tolerance are included for later comparisons.

Table 3 further investigates the behavior of LRE-A by examining the average and standard

deviation of run times over 20 randomly generated instances from the problem class in Table

2. All instances solve quickly to optimality (0% tolerance), with the exception of one instance

of Grid(450, 300) with medium weight limit. There, the algorithm finds the optimal solution

and proves it to be within 0.5% of optimality in 0.4 seconds, but requires 1070 seconds

to prove optimality. However, this instance solves to optimality in 61 seconds using the

following decomposition technique:

1. Let EI denote the set of a edges comprising the “middle echelon” of edges in Grid(a, b),

i.e., the edges between vertex columns {b/2Q and {b/2Q+1. Since EI essentially defines
an s-t cut with no backward edges, every feasible path from s to t must use one and

only one edge e ∈ EI.

2. For each edge e ∈ EI, solve a CSPP that restricts any solution to use that edge. (Simply
disallow traversal of eI ∈ EI\{e}.)

3. The best solution found solves the original CSPP.

Each restricted problem tends to yield a stronger lower bound, which appears to be key

to this method’s success. The decomposition also solves faster than might be expected,
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Run Time (sec.)
Grid Weight Tolerance 0% Tolerance 5%

Limit avg. s.d. avg. s.d.
(30, 100) L 0.0 0.0 0.0 0.0
(100, 100) L 0.1 0.0 0.0 0.0
(200, 200) L 0.3 0.1 0.1 0.0
(350, 200) L 0.6 0.4 0.2 0.0
(450, 300) L 1.2 0.3 0.4 0.0
(30, 100) M 0.0 0.0 0.0 0.0
(100, 100) M 0.1 0.0 0.0 0.0
(200, 200) M 0.5 0.8 0.1 0.0
(350, 200) M 0.5 0.2 0.1 0.0
(450, 300) M 5.0† 13.0 0.1 0.0
(30, 100) H 0.0 0.0 0.0 0.0
(100, 100) H 0.0 0.0 0.0 0.0
(200, 200) H 0.1 0.1 0.1 0.0
(350, 200) H 0.2 0.1 0.1 0.0
(450, 300) H 0.5 0.2 0.1 0.0

Table 3: Computational results for the LRE-A algorithm solving singly constrained CSPPs on randomly gen-
erated, grid networks. Averages (“avg.”) and standard devations (“s.d.”) over 20 instances are reported, for
optimality tolerances of both 0% and 5%. One instance, in the group indicated by “†,” required application
of a special decomposition technique to solve quickly.

because (i) once a feasible solution is found for some edge, the best upper bound z̄ serves

to limit the enumeration when considering edges e ∈ EI not yet investigated, and (ii) the
optimal λ from one restricted CSPP provides an advanced start for optimizing z(λ) in the

next problem. A dagger marks the use of this decomposition in Table 3 (only once, for the

instance mentioned).

Table 3 indicates that, with one exception, average run times for these problem classes

are consistent with the results for the D&B problems in Table 2. And, with one exception,

standard deviations are reasonably small. Thus, LRE-A seems to perform well, consistently.

Note that the run times with the 5% optimality tolerance are almost negligible.

5.2.2 Singly Constrained CSPPs on Large Grid Networks

We now examine the performance of LRE-A on larger grid networks of the same general class

tested above. (We also include results for smaller problems here for the sake of comparison.)

Table 4 lists average run times, divided by millions of vertices, for LRE-A applied to groups

of 20 randomly generated, singly constrained, problem instances of various sizes. We divide
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Run-time sec./(|V |/106)
Grid |V | |E| Low Medium High

1% 5% 1% 5% 1% 5%
(30, 100) 3,002 8,830 1.5 1.5 2.0 1.8 1.3 1.3
(100, 100) 10,002 29,990 3.0 2.5 2.0 1.9 1.5 1.5
(200, 200) 40,002 119,800 3.0 2.8 2.2 2.0 1.5 1.5
(350, 200) 70,002 209,950 2.9 2.3 1.9 1.7 1.0 1.0
(450, 300) 135,002 404,850 3.0 2.6 2.1 1.9 1.0 1.0
(600, 400) 240,002 719,800 3.2 2.6 2.0 1.8 1.0 1.0
(300, 1000) 300,002 898,300 3.4 2.7 2.0 1.9 1.0 1.0
(800, 600) 480,002 1,439,600 7.3 5.6 4.4 3.7 1.5 1.5
(1100, 850) 935,002 2,804,400 3.2 2.6 2.2 1.9 1.0 1.0
(1000, 1000) 1,000,002 2,999,000 3.3 2.6 2.1 1.9 1.0 1.0
(1350, 1000) 1,350,002 4,049,350 3.5 2.7 2.1 1.9 1.0 1.0
(1500, 1100) 1,650,002 4,949,300 3.4 2.7 2.0 1.9 1.0 1.0
(1650, 1200) 1,980,002 5,939,250 3.4 2.7 2.0 1.9 1.1 1.1
(1800, 1300) 2,340,002 7,019,200 3.5 2.7 2.0 1.9 1.1 1.1
(2000, 1500) 3,000,002 8,999,000 3.5 2.7 2.0 1.9 1.1 1.1
(2200, 1700) 3,740,002 11,218,800 3.3 2.8 2.3 2.0 1.1 1.1
(2000, 2000) 4,000,002 11,998,000 4.2 3.0 2.3 2.0 1.2 1.2

Table 4: Scaled average run times for LRE-A solving singly constrained CSPPs on large grid networks.
(Smaller networks included for comparison.) Averages cover 20 randomly generated instances, and run
times per million vertices are listed in the last six columns for low, medium, and high weight limits. The
nearly constant values across each column indicate that run times grow only linearly in |V |. Note that D&B
only consider problems of the sizes above the horizontal line.

by this scaling factor to see how run times depend on network size. Note that the longest

average run time is only about 16.8 seconds, for Grid(2000, 2000), which has about 4 million

vertices and 12 million edges.

Table 4 displays results for low, medium, and high weight limits. Most of these problems

are substantially larger than those considered by D&B, who do not consider networks larger

than Grid(450, 300). Because these problems are large, we make no attempt to solve them

optimally, but, rather, allow 1% and 5% optimality gaps. Standard deviations of the run

times (not reported in Table 4) are consistently small, approximately 0.1 seconds per million

vertices for low weight limits, and even smaller for the other cases. Results suggest that run

times for LRE-A tend to increase only linearly in |V | for this class of problems.

5.2.3 Multiply Constrained CSPPs on Large Grid Networks

Tables 5-7 report results for LRE-PA solving the CSPPs of Table 4, but with two to ten side

constraints instead of one. Other than the small problems from Beasley and Christofides [3],
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Run Time: Average and Standard Deviation (sec.)
Grid |I|=2 |I|=3 |I|=4 |I|=5 |I|=10

avg. s.d. avg. s.d. avg. s.d. avg. s.d. avg. s.d.
(30,100) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(100,100) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1* 0.0
(200,200) 0.1 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.5 0.1
(350,200) 0.2 0.0 0.2 0.0 0.3 0.0 0.4 0.0 1.7 0.2
(450,300) 0.4 0.0 0.5 0.0 0.6 0.0 0.8 0.1 2.3 0.4
(600,400) 0.8 0.1 1.1 0.1 1.9 0.3 2.3 0.3 8.3 1.1
(300,1000) 0.8 0.0 1.0 0.1 1.3 0.1 1.7 0.1 4.9 0.5
(800,600) 2.3 0.3 4.2 0.7 8.1 1.6 10.4 2.2 32.5 3.9
(1100,850) 2.4 0.1 3.3 0.3 4.2 0.3 5.1 0.4 11.8 0.8
(1000,1000) 2.6 0.1 3.6 0.3 4.5 0.3 5.5 0.3 12.5 0.9
(1350,1000) 3.6 0.2 4.9 0.3 6.4 0.4 7.5 0.6 36.8 13.0
(1500,1100) 4.4 0.2 6.0 0.4 7.7 0.4 9.2 0.7 - -
(1650,1200) 5.4 0.2 7.2 0.5 9.3 0.6 11.8 0.5 - -
(1800,1300) 6.2 0.3 8.8 0.6 28.6 8.0 - - - -
(2000,1500) 9.0 2.9 - - - - - - - -

Table 5: Solution statistics for LRE-PA solving multiply-constrained CSPPs on large grid networks. The
|I| side constraints have high (“H”) weight limits, and the optimality tolerance is 5%. Averages cover 20
randomly generated instances. Pre-processing has no effect on these instances and all are feasible. Results for
a 1% tolerance gives nearly identical results except for the problem marked with an asterisk. One instance of
this problem solves slowly at this lower tolerance, but the decomposition technique solves it in 93.7 seconds.
We do not solve problems marked with “-” because of computer memory limitations.

D&B do not solve any multiply constrained CSPPs, so we can make no comparisons with

their algorithm here.

Table 5 lists solution statistics for problems with the high (“H”) weight limit and a 5%

optimality gap. Because these problems are loosely constrained, pre-processing removes

no edges (although the overhead is minimal). Using a 1% tolerance (results not shown)

gives nearly identical solution statistics with one exception indicated by an asterisk (group

Grid(100,100) with |I|=10). One instance in this group of 20 did not solve within 30 minutes,
but it solves in 93.7 seconds using decomposition. When including the decomposition run-

time, we obtain an average time of 5.3 seconds for this group.

Next, we briefly consider LRE-PA applied to the large-grid CSPPs but with low (“L”)

weight limits. We omit the corresponding table because: (i) All 1340 randomly generated

instances are infeasible, (ii) the pre-processing routine proves this by, essentially, removing

all edges in each network, and (iii) average run times are all smaller than the corresponding

times in Table 5.
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The computational evidence provided by the “H” and “L” problems indicates that LRE-

PA can easly solve certain large, loosely constrained or over-constrained CSPPs, even when

the problems have a moderate number of side constraints: Pre-processing tends to identify

infeasibility quickly for the over-constrained problems, while the loosely constrained problems

have small duality gaps, which the algorithm closes to sufficient accuracy quickly.

We next consider the more challenging problems of the “M” variety.

Tables 6 and 7 present solution statistics on for the large-grid CSPPs with medium weight

limits, using 1% and 5% optimality tolerances, respectively. Parenthetical superscripts in

these tables indicate how many instances (out of 20) did not solve in 30 minutes. Each of

these does solve, however, when the decomposition is applied, and the statistics for these

problems have been computed using the decomposition-enabled times.

Results in Table 6 indicate that, with only three exceptions, LRE-PA quickly solves the

580 M-instances with two or three side constraints to within 1% of optimality. (All instances

are feasible.) The decomposition technique solves the exceptions reasonably quickly.

Instances with ten side constraints also solve efficiently at 1%. All these instances are

infeasible, but not as “clearly” as in the L-instances. That is, pre-processing does not remove

all edges in all instances for these problems.

The problems with four and five side constraints include several “barely feasible” or

“barely infeasible” instances. Hence, we cannot expect that the process of optimizing z(λ)

will always generate a feasible solution and a good upper bound. But, enumeration using the

weak upper bound (|V |−1)cmax+γ can be extremely slow for moderately large networks. In
view of this, we equip LRE-PA with the feasibility-checking enhancement of section 4.3, to

create LRE-PAF. Solution statistics in Table 6 reflect application of this enhanced algorithm.

The combination of several side constraints, many nearly feasible paths, and moderate

or large network size can increase run times substantially when using this tight optimality

tolerance. Table 6 shows that smaller instances with four and five side constraints can be

solved, possibly requiring decomposition, but some larger instances may simply become too

difficult. We note that many of the instances with four and five side constraints do solve
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Average Run Time and Standard Deviation (sec.)
Grid |I|=2 |I|=3 |I|=4 |I|=5 |I|=10

avg. s.d. avg. s.d. avg. s.d. avg. s.d. avg. s.d.
(30,100) 0.0 0.0 0.0 0.1 8.8 31.1 142 376 2.1 6.2

(100,100) 0.1 0.0 1.5(1) 3.0 13.4(1) 29.2 24.0 70.3 2.4 7.0
(200,200) 0.2 0.1 3.0 8.3 258(4) 423 [19] 0.3 0.0

(350,200) 0.4 0.2 2.6 3.3 161(2) 280 [16] 22.5 95.6
(450,300) 0.8 0.4 0.8 0.0 [18] [11] 45.8 194
(600,400) 2.5 1.2 64.8 247 [16] [6] 3.2 0.0

(300,1000) 1.5 0.4 9.6(1) 23.9 12.6 9.3 [17] 2.8 0.0
(800,600) 10.5 5.2 57.8 17.8 [19] [12] 10.8 0.1

(1100,850) 4.7 1.1 79.0(1) 286 [19] [15] 7.5 0.0
(1000,1000) 4.9 0.5 14.7 5.3 [18] [11] 8.0 0.0
(1350,1000) 6.9 1.0 20.0 7.8 60.8 65.2 [15] 19.7 9.0
(1500,1100) 8.5 0.9 26.0 7.9 58.3 49.9 [16] - -
(1650,1200) 10.6 3.0 41.7 37.2 [18] [16] - -
(1800,1300) 12.0 1.6 36.3 9.7 71.9 44.1 - - - -
(2000,1500) 17.0 4.8 - - - - - - - -

Table 6: Solution statistics for LRE-PAF, with a 1% optimality tolerance, applied to large-grid CSPPs with
medium (“M”) weight limits and |I| weights. The parenthetic superscripts specify the number of instances
(out of 20) that did not solve in 30 minutes. These instances do solve using decomposition, and those
decomposition times are used to compute solution statistics. For problems where LRE-PAF did not solve
all 20 instances in 30 minutes, with or without decomposition, we report the number that did in brackets.
We did not attempt to solve problems marked with “-” because of computer-memory limitations.

quickly, but when one or more of the 20 instances in a group does not solve in 30 minutes by

means of LRE-PAF, with or without decomposition, we place the number of solved instances

in brackets.

Table 7 reports solution statistics for LRE-PAF applied to the problems of Table 6, but

with a 5% optimality tolerance. Run times decrease significantly in some cases. In particular,

all instances with four side constraints now solve easily using LRE-PAF, and only a few large

instances with five side constraints remain unsolved after 30 minutes. Note that some of the

standard deviations in Tables 6 and 7 are large, which indicates substantial variation in

problem difficulty with some of these problem sets.



8 July 2005 23

Average Run Time and Standard Deviation (sec.)
Grid |I|=2 |I|=3 |I|=4 |I|=5 |I|=10

avg. s.d. avg. s.d. avg. s.d. avg. s.d. avg. s.d.
(30,100) 0.0 0.0 0.0 0.0 0.1 0.2 1.1 2.1 2.1 6.2
(100,100) 0.0 0.0 0.1 0.1 1.0 1.7 1.8 2.0 2.4 7.0
(200,200) 0.2 0.0 0.2 0.1 2.1 3.1 47.1(2) 102 0.3 0.0

(350,200) 0.2 0.0 0.3 0.0 3.5 7.1 100(2) 206 22.5 95.6

(450,300) 0.5 0.0 0.8 0.0 38.6 156 39.9(2) 63.5 45.8 194
(600,400) 1.5 0.0 2.3 0.2 9.5 21.3 [19] 3.2 0.0
(300,1000) 1.3 0.0 1.8 0.3 2.3 0.1 12.5 24.0 2.8 0.0
(800,600) 5.5 0.2 11.9 0.5 21.5 3.6 [18] 10.8 0.1
(1100,850) 3.7 0.0 5.1 0.2 6.7 0.3 54.7 91.6 7.5 0.0
(1000,1000) 4.0 0.0 5.4 0.2 7.1 0.4 [19] 8.0 0.0
(1350,1000) 5.5 0.1 7.5 0.2 9.7 0.5 [19] 19.7 9.0
(1500,1100) 6.7 0.0 9.2 0.2 11.9 0.5 39.5 106 - -
(1650,1200) 8.3 0.0 11.4 0.2 14.9 0.7 [19] - -
(1800,1300) 9.7 0.0 13.4 0.3 36.2 10.6 - - - -
(2000,1500) 12.8 1.8 - - - - - - - -

Table 7: Solution statistics for LRE-PAF, with a 5% optimality tolerance, applied to large-grid CSPPs with
medium (“M”) weight limits and |I| weights. See the caption of Table 6 for additional details.

5.3 Routing Military Units through a Road Network

Our third class of test problems derives from planning the movement of a military unit

through a road network. Consider a small convoy, which must move from junction s in the

network to junction t, in a limited amount of time. Planners wish to select a route that

meets the time limit, but minimizes “risk.” We can formulate this problem as a CSPP with

one side constraint.

Let weight fe = f1e of edge e = (u, v) represent the time required to traverse road segment

e, and let length ce represent the “risk” of traversing e. The convoy will travel with civilian

traffic and obey speed limits, so fe equals the physical length of e divided by its speed

limit. Planners deem that larger roads with higher speed limits are riskier, increasing the

unit’s exposure to mines, ambushes, etc. Hence, as a surrogate for risk we set ce = feβe,

where βe = 5.0, 2.0, 1.0, 0.5, and 0.2 when e is a major highway, a minor highway, a major

expressway, a minor expressway, or a local road, respectively. Consequently, the optimal

route traverses small, slow roads as much as possible, given the time limit.

Tables 8 and 9 present computational results, using 1% and 5% relative optimality toler-

ance, respectively, for the LRE algorithm, with and without various enhancements, applied
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Edges pre- Initial gap (%) Duality Gap (%) Run Time (sec.)
g proc. (%) No pre. Pre. No pre. Pre. LRE LRE-P LRE-A LRE-PA
240* 100 — — — — 0.0 0.0 0.0 0.0
250 92 2.1 <1.0 2.1 <1.0 0.0 0.0 0.0 0.0
260 83 1.7 1.7 <1.0 <1.0 0.0 0.0 0.0 0.0
270 77 16.6 16.6 <1.0 <1.0 36.1 38.0 7.0 7.1
280 73 15.0 14.2 6.2 5.2 3.6 2.1 1.0 0.5
290 70 35.3 11.7 6.5 3.8 1.3 0.1 0.4 0.0
300 68 64.4 33.2 9.2 3.3 885.9 67.7 217.5 16.5
310 64 <1.0 <1.0 <1.0 <1.0 0.0 0.0 0.0 0.0
320 59 12.9 12.9 1.9 1.9 0.2 0.2 0.1 0.1
330 49 <1.0 <1.0 <1.0 <1.0 0.0 0.0 0.0 0.0
340 45 1.1 1.1 <1.0 <1.0 0.0 0.0 0.0 0.0
350 40 <1.0 <1.0 <1.0 <1.0 0.0 0.0 0.0 0.0
360 37 1.2 1.2 <1.0 <1.0 0.0 0.0 0.0 0.0

Table 8: Computational results for planning the movement of a military convoy through a road network.
The relative optimality tolerance is 1%. We report edges removed by pre-processing, initial gap (i.e., the
relative gap between z̄ and z∗), duality gap (i.e., the relative gap between z∗ and z∗), and run times for
various algorithmic variants. The algorithms using the enhancements of section 4 (LRE-P, LRE-A, LRE-PA)
significantly outperform the basic LRE algorithm in many instances. The instance marked with an asterisk
is infeasible.

to the road network in Maryland, Virginia, and Washington, D.C. [6]. The data include all

interstate, state, and county roads with speed limits over 25 miles per hour, and generate

a graph with 3,670 vertices and 9,876 edges. Road segments with speed limits 65, 55, 50,

45, and 30 miles per hour are categorized as major highways, minor highways, and so on,

respectively. Tables 8 and 9 displays computational results for a range of hypothesized time

limits in minutes. Note that it is impossible to reach location t in less than 240 minutes,

and no improvement in risk accrues beyond 360 minutes.

The second column of Tables 8 and 9 display the percentage of edges that can be removed

by pre-processing. Most edges are eliminated by pre-processing for tightly constrained prob-

lems, but, even a modest amount of pre-processing can tighten the Lagrangian lower bound

substantially. Columns 3-6 in Tables 8 and 9 exemplify this. For the case with g = 300,

the tightening in the Lagrangian lower bound reduces run time significantly, as seen from

comparing the basic LRE algorithm (column seven) with its enhanced version including pre-

processing (column eight). We observe a similar reduction when comparing LRE-A (column

nine) with LRE-PA (column ten), which adds pre-processing. This effect is evident for both

optimality tolerances.
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Edges pre- Initial gap (%) Duality Gap (%) Run Time (sec.)
g proc. (%) No pre. Pre. No pre. Pre. LRE LRE-P LRE-A LRE-PA
240* 100 — — — — 0.0 0.0 0.0 0.0
250 92 <5.0 <5.0 <5.0 <5.0 0.0 0.0 0.0 0.0
260 83 <5.0 <5.0 <5.0 <5.0 0.0 0.0 0.0 0.0
270 77 16.6 16.6 <5.0 <5.0 0.4 0.4 0.1 0.1
280 73 14.9 14.2 6.2 5.2 0.3 0.1 0.1 0.1
290 70 35.3 11.7 6.5 <5.0 0.1 0.0 0.0 0.0
300 68 64.4 33.2 9.2 <5.0 14.3 1.1 4.5 0.3
310 64 <5.0 <5.0 <5.0 <5.0 0.0 0.0 0.0 0.0
320 59 12.9 12.9 <5.0 <5.0 0.1 0.1 0.0 0.0
330 49 <5.0 <5.0 <5.0 <5.0 0.0 0.0 0.0 0.0
340 45 <5.0 <5.0 <5.0 <5.0 0.0 0.0 0.0 0.0
350 40 <5.0 <5.0 <5.0 <5.0 0.0 0.0 0.0 0.0
360 37 <5.0 <5.0 <5.0 <5.0 0.0 0.0 0.0 0.0

Table 9: Computational results for planning the movement of a military convoy through a road network.
The relative optimality tolerance is 5%. See the caption of Table 8 for additional details.

A similar comparison illustrates the effect of the aggregated-bounds tests. For the cases

with time limits g = 270 and g = 300, these tests reduces run times significantly; com-

pare columns seven and nine. We observe a similar reduction when comparing the LRE

algorithm with pre-processing (column eight) with the “full algorithm,” which includes both

pre-processing and aggregated-bounds tests; compare columns eight and ten. Overall, Tables

8 and 9 indicate that the LRE algorithm, particularly with enhancements, does solve the

CSPP on this real-world network efficiently.

6 Conclusions

We have described an improved algorithm for solving the constrained shortest-path problem

(CSPP). Our “LRE algorithm” Lagrangianizes all side constraints, optimizes the resulting

Lagrangian function, defines new edge lengths through the Lagrangian function, and enu-

merates all near-shortest paths in order to close any remaining duality gap.

Testing on a variety of instances with up to ten side constraints indicates that the LRE

algorithm can be significantly faster than the most recently published label-setting algorithm,

and can handle instances with millions of vertices and edges.

The basic LRE algorithm solves many large problems quickly, but several enhancements

can sometimes improve performance:
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1. Pre-processing to eliminate edges that can be determined, a priori, not to lie on any

optimal path,

2. Adding aggregated constraints to help exclude some infeasible paths from being followed

in the path-enumeration phase,

3. Solving an initial feasibility problem, which simply represents a variant of the original

CSPP, when the process of optimizing the Lagrangian function does not yield a feasible

solution, and

4. Decomposing the problem into a series of restricted versions, in which every feasible

path must traverse a specific edge.

Versions of the first three enhancements, even when not required, do not substantially add

to computational overhead, so we recommend them as standard additions to the basic algo-

rithm.
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Appendix

Path-Enumeration Subroutine for LRE Algorithm to Solve CSPP
INPUT: A directed graph G = (V,E) in adjacency-list format, s, t, edge length

vector c ≥ 0, side-constraint data for Fx ≤ g with fi ≥ 0,
optimal or near-optimal Lagrangian vector λ for CSPLR,
upper bound z̄, lower bound z(λ) and optimality tolerance δ ≥ 0.

OUTPUT: A δ-optimal shortest path x∗ satisfying Fx∗ ≤ g, if such a path exists.
NOTE: “firstEdge(v)” points to the beginning of a linked list of edges directed out of v
{
cI ← c+ λF ;
/* Add a “0-th side constraint” to limit enumeration based on c */
I+ ← I ∪ {0}; f0 ← c; g0 ← z̄;
/* The following requires just one backwards shortest-path calculation */
for ( all v ∈ V ) { d(v)← minimum distance, in terms of cI, from v to t; }
for ( each side constraint i ∈ I+ ){

/* Solve a backwards shortest-path problem using edge “lengths” fi */
for ( all v ∈ V ) { di(v)← minimum weight, in terms of fi, from v to t; }

}
for( all v ∈ V ) { nextEdge(v) ← firstEdge(v); }
L(s)← −λg; /* Initialize path length with the Lagrangian constant term */
for( all i ∈ I+ ) { Li(s)← 0; } /* Initial path weight with respect fi is 0 */
theStack ← s; onStack(s) ← true; onStack(v) ← false ∀ v ∈ V \{s};
while ( theStack is not empty ){

u ← vertex at the top of theStack;
if ( nextEdge(u) W= ∅ ) {

e ← the edge pointed to by nextEdge(u); /* e = (u, v) */
increment nextEdge(u);
if ( (onStack(v) = false) and (L(u) + cIe + d(v) < z̄ − δ)

and (Li(u) + fie + di(v) ≤ gi ∀ i ∈ I+) ) {
if ( v = t ) { /* An improved solution has been found */

Represent the feasible path encoded as theStack ∪ {t} through
its edge-incidence vector x̂;
z̄ ← cx̂; g0 ← z̄; x∗ ← x̂;
/* Preemptive termination is possible in the following step */
if ( z̄ − z(λ) ≤ δ ) goto Finish;

} else {
push v on theStack; onStack(v) ← true;
L(v)← L(u) + ce;
for ( all i ∈ I+ ) { Li(v)← Li(u) + fie; }

}
}

} else {
Pop u from theStack; onStack(u) ← false;
nextEdge(u) ← firstEdge(u);

}
}
Finish: If x∗ is empty Print ( Problem is infeasible ), otherwise Print ( x∗ );

}


